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You need to automate that.

Outline

« MicroBooNE and Deep Neural Networks
» Deep Learning “lessons learned”

» Deep Learning “lessons learning”

e Summary

2



LArTPC: Particle Imaging Machine

Reconstructed 3D View
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Data Reconstruction / Analysis Challenge

Solutions?

e Path A: “traditional path”
- Hand-engineered reconstruction algorithms

e Path B: machine learning

-“Deep Learning’
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Boosted Decision Tree
» Used for low energy (>40 MeV) single proton search

 Input: reconstructed parameters (length, angle, etc...)
 Analysis details available in UB public note page

B | BDT selected proton W
l.l (010 MicroBooNE
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http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf
http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf
http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf

Convolutional

Neural Networks
for

LArTPC Analysis




CNNs for Image Analysis

-0.28 1n

= Object Detection 3

B A
T W
%{f"; LRSS car

2 3o T I P
1.23 white B ity -
LA N .

|.45 dress
0.06 standing

-

-0.13 with
3.58 tennis
1.81 racket

0.06 two

0.05 people

-0.14 1n

cheetah
snow leopard
ptian cat

0.30 green

-0.09 behind

‘- -0.14 her

Pixel Classification
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e Superb image analysis
capabilities

« Trainable from raw data
(large tensor)



CNN for Event Reconstruction

CNN-based reconstruction tools in MicroBooNE

 Event selection (image classification)
*Vertex finding (object detection)

* Clustering (semantic segmentation)

*Particle identification (image classification)

Muon
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-~ Detect interaction
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Pixel Labeling
+

Particle ID
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CNN in UB: Image Classification (I)

Particle identification

Trained a network to distinguish 3 particle types

e Simulated particles

- | p - using 1 (collection) plane
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CNN in UB: Image Classification (I)

Particle identification

Trained a network to distinguish 5 particle types

Particle [ ~ Someet pi Further improvement?

Fraction

«~5 to 10% improvement by
exploring network architectures
- network width, effective depth

e more improvement by combining
3 plane information

JINST 10.1088/1748-9221

Resource Usage

Architecture study include performance vs. speed!
Current architecture choice ~7 ms/image (@ Titan X GPU)

10


http://iopscience.iop.org/1748-0221/12/03/P03011/

CNN in UB: Image Classification (1I)

Neutrino event selection
Distinguish neutrino+cosmic vs. cosmic-only events
 Training sample uses simulated neutrino + cosmic data image

8400 Simulated Neutrino Interaction
8100




CNN in UB: Image Classification (1I)

Neutrino event selection
Distinguish neutrino+cosmic vs. cosmic-only events
 Training sample uses simulated neutrino + cosmic data image

8400 . ‘ Simulated Neutrino Interaction

8100 o | pd Overlaid on Data Cosmic Image




CNN in UB: Image Classification (1I)

Neutrino event selection
Distinguish neutrino+cosmic vs. cosmic-only events
 Training sample uses simulated neutrino + cosmic data image

Neutrino ID Network

2 output nodes

Fully Connected Layer: 4096 nodes

Fully Connected Layer: 256 nodes

: MicroBfioNE
Siriulation + Data Overlay

Average Pool
Dropout: 0.5 probability

MicroBooNE
Simulation + Data Overlay
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Neutrino Classification Score cosmics+neutrino efficiency

Concatenate

A~

3x3 Max Pool
3x3 Convy, stride 2, pad 3

3x3 Conv, stride 2, pad 3
3x3 Max Pool
7x7 Conv, stride 2, pad 3

i Poorer performance on real data ,\
i - Tested with CC-inclusive selection sample §
{ from traditional reco
| - Importance to test/study with real data  §
13

Siamese Architecture

for 3 plane analysis


http://iopscience.iop.org/1748-0221/12/03/P03011/

CNN in UB: Object Detection

Event vertex detection

Trained a network to find neutrino interaction region

 Training sample uses simulated neutrino + cosmic data image
- Supervised training using =100,000 collection plane 1images (1-plane)

8400 | ‘ Simulated Neutrino Interaction
8100 P ‘ '

s Overlaid on Data Cosmic Image
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CNN in UB: Object Detection

Event vertex detection

Trained a network to find neutrino interaction region

 Training sample uses simulated neutrino + cosmic data image
- Supervised training using =100,000 collection plane images (1-plane)

JINST 10.1088/1748-9221
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Yellow: “correct”

bounding box
Red: by the network

Network Output

- MicroBooNE | - 2.6m (width) x 1 m (height)
Simulation + Data Overlay -



http://iopscience.iop.org/1748-0221/12/03/P03011/

CNN in UB: Object Detection

Event vertex detection

Trained a network to find neutrino interaction region

 Training sample uses simulated neutrino + cosmic data image
- Supervised training using =100,000 collection plane 1images (1-plane)
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http://iopscience.iop.org/1748-0221/12/03/P03011/

CNN in UB: Semantic Segmentation

Particle clustering using a network

CNN designed to segment pixels by predefined semantics
 Current semantics: [background, shower, track]

» Supervised training on purely simulated 1images
- Custom training technique to improve performance
- On-going work: particle-wise pixel clustering
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CNN in UB: Semantic Segmentation

Particle clustering using a network

CNN designed to segment pixels by predefined semantics
 Current semantics: [background, shower, track]

» Supervised training on purely simulated 1images
- Custom training technique to improve performance
- On-going work: particle-wise pixel clustering
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CNN in UB: Semantic Segmentation

Particle clustering using a network

CNN designed to segment pixels by predefined semantics
 Current semantics: [background, shower, track]

» Supervised training on purely simulated 1images
- Custom training technique to improve performance
- On-going work: particle-wise pixel clustering
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CNN in UB: Semantic Segmentation

Real Data ADC Image 30 cm
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CNN in UB: Semantic Segmentation

T Network Output ) 30 cm

Collection Plane View
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End-to-End Reconstruction Training
Optimize multiple tasks together

“Multi-task Network Cascade™ can introduce task dependencies
» Allows to optimize the whole chain together
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CNN in MicroBooNE

Some studies published!

“Event selection (image classiﬁcationf1
CVertex finding (object detection)

* Clustering (semantic segmentation)
(-Particle identification (image class

fication)

SRy Cornell University
Library

arXiv.org > physics > arXiv:1611.05531
Physics > Instrumentation and Detectors

Convolutional Neural Networks Applied to Neutrino Events in a
ee ree Liquid Argon Time Projection Chamber

MicroBooNE collaboration: R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M.
Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F.

Cavanna, H. Chen, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. . Crespo-Anadén, M. Del
O c O n a c u S Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman,

A. P. Furmanski, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso,

R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, C. James, J. Jan de
Vries, C.-M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum,

([
for details!
® (Submitted on 17 Nov 2016)

We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a
liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle
images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated
neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the
potential of convolutional neural networks for particle identification or event detection on simulated neutrino
interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at
or near ground level.
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http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531

CNN in MicroBooNE

Hardware resource!

PIs responded our voice to expand GPU resource for R&D

« MIT, Columbia, Yale, UM Ann Arbor, PNNL TECI & PADD
° Want more' el o o) THE MOST ADVANCED

HYPERSCALE DATACENTER GPU EVER BUILT

O™ 00¢.-,

_ : I S iniin |
i1l :
: n d >

1 ~ 4
Vo .
el :
O.1

NVIDIA TITAN X

<ANVIDIA.

DL Interface Software

Generic image processing software (no need to be LArTPC)
* Written in C++, extensive Python support

* Interface to C++/Python DL softwares (caffe, TensorFlow, etc.)
- Fast, threaded 1O to maximally utilize GPUs
- Can bridge LArSoft (or any std::vector<float>) and DL software w/o
file format conversion for running inference.




L.essons L.earned

» CNNs can perform reconstruction tasks
- Classification, object detection, and pixel clustering

« CNNs are promising techniques for LArTPC

- Low information density: custom techniques can be helpful

» Important to analyze response on real data
- Topological feature learning seems more immune
- Building labeled image database from our data
- Explore weak-supervision training & adversarial network

o Initial challenges = software & hardware (GPU)

- Happy to advise on your GPU needs ($4k~)
- Happy to share our software (public github)
- Planning software workshops (please request!)

e



Lessons We're Learning

DeepLarning Projects
(0}

LArTPC Analysis

... these images
are almost empty...




v Reconstruction
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DUNE Simulation
| BLV Talk by Jeremy Hewes
\

n-n Oscillation

- I. A:-. /'-‘“ﬁ L
Jeremy Hewes Georgia Karagiorgi

o NeW thSiCS! U. Manchester Columbia U.

» Signal vs. background (atm. v’s)
» Developed from UB for DUNE

 Rich event topology, suited for
CNN pattern recognition power

48 cm

Benchmarking CNN performance on 200k event samples

10° 100
Preliminary Preliminary

DUNE Simulation
BLYV Talk by Jeremy Hewes

Signal selection efficiency [%]



https://indico.fnal.gov/getFile.py/access?contribId=4&resId=0&materialId=slides&confId=14492
https://indico.fnal.gov/getFile.py/access?contribId=4&resId=0&materialId=slides&confId=14492

Proton Decay

i & AN
A W 'w&“*t
Elena Gramellini Kevin Wierman Eric Church

o . . New physics!
e ke * | . Starting from UB work,
real application @ DUNE
» Current focus on K*/mt*
_ decay channel (PNNL)
e U S | » Topology classification

SIMULATION

'~ * Run 1530 Event 30.
August 17th 2015

PDK background study in UB Example Kaon decay channel
(Elena G. @ TAUP 2015) ., (Kevin W./Eric C. @ PNNL)



PID for Neutrino Analysis

Summer Student Summer Student
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— Preliminary — Preliminary




3D Point Prediction

Run 3469 Event 28734, October 21", 2015

uBoo

>

Run 1463 Event 23. August 15t 2015 10:37
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Lessons Learning

» Fully CNN-based reconstruction
- similar to staged LArSoft reconstruction steps
- allows stage-by-stage comparison
- WireCell-like 3D reconstruction + analysis path







Thank you!
for your attention :)

" X/ A

—

Sl

Take Away Messages

1. LArTPCs need advanced pattern recognition algorithms
2. MicroBooNE develops CNN-based reconstruction tools

3. MicroBooNE applies CNN techniques to physics analysis

4. MicroBooNE studies network response on real data

5. MicroBoolNE shares tools developed and knowledge learnt

34



Extracurricular Lessons Learned
Remember what happen“ed” with Al

THEVERGE  7ect - SCIENCE - CULTURE - CARS - REVIEWS - LONGFORM  VIDED  MORE - f ¥

SCIENCE

Google’s DeepMind pits Al against Al to see if they
fight or cooperate
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More Projects?




Training on Data

4 g)r(?]éct I
 Labeled image database HBooNB . uBooN®_
- Labeling software tools —
-“Chimera” Image maker D P s
« Weakly supervised training

Data/Sim. Discrepancy

 Train discriminator, study the cause
e Generative Adversarial Network Uniabeled Real mages

- Refine MC image to look like data m w F

- Train analysis CNN on refined sim.

“encoder” for human eye illustration

| ‘ z B
=-C2-f

Synthetic Refined

by Apple research team
arXiv:1612.07828



https://arxiv.org/pdf/1612.07828.pdf
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You need to automate that.

Outline

e Intro: what is deep learning?

 Event reconstruction + analysis challenges
» Deep neural network applications

e Summary

a9



Challenges for Neutrlno Analys1s (I
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Challenges for Neutrino Analysis (I)

100 cm _. 10 cm
: Y
E Wire i) e ! Proton
& O : (K.E. 123 MeV)
' 3 '.'
8 & | | | Ve —
o pud . | !
- | | |
| '| | ' & +  Electron
| ! (K.E. 320 MeV)
| | % 1 )
' \ . o .
' | MicroBooNE Simulation
e Preliminary
| I \
|
1. .Iﬁ' Y
|  <\
// |l x By .
W ~ Collection Pla

7 Cosmi"'(; Data : Run 6280 Event 6812 May 12?11,, 016




Challenges for Neutrino Analysis (II)

lJJE;()(IJEIis?‘ef' C ]
= ! osmlcs
Cosmics
p
Niie 2 o = A
i | -/ Cosmics

Challenge 2: identifying particles

Necessary for analyzing neutrino + nuclear interactions

Run 3469 Event 53223, October 21°%, 2015
55 cm

42



24 cm

Challenges for Neutrino Analysis (I11)

40 cm

uBooNE _

\

Challenge 3: Clustering

Reconstruction 1s already hard, and one
must cluster all scattered charges

Run 1153 Event 40. August 6™ 2015 21:07

43



Challenges for Neutrino Analysis (IV)

Challenge 4: programming is not easy

Need efficient, fast pattern recognition algorithms and a
framework to run a chain (or multiple chains) of them

01101010100101011010101001011010

0111010101001010100010010101101
101001011010101001010110101010

101101010100101011010101010110
! 0101001010110101010010110101010
01011010101001010110101010010110
10101001010110101010101101010100
10101101010100110101101010100101




... enough challenges ...

Solutions? 5&

e Path A: “traditional path”
- Hand-engineered reconstruction algorithms

e Path B: machine learning




CNN for LArTPC
Image Analysis

... these images
are almost empty...




Introduction to CNNss (II)

Background: Neural Net

The basic unit of a neural net
1s the perceptron (loosely
based on a real neuron)

Takes 1n a vector of inputs (x).
Commonly inputs are summed  mput Neuron  Activation

: . Sum Output
with weights (w) and offset ()
then run through activation. X+ b Wi-X+b; >0

vT/i-)_c’+b,-<O.

47



Introduction to CNNss (II)
Perceptron 2D Classification

Imagine using two features to separate cats and dogs

By picking a value for w and b,
domestication we define a boundary
from wikipedia between the two sets of data

48


https://en.wikipedia.org/wiki/Perceptron

Introduction to CNNss (II)
Perceptron 2D Classification

Maybe we need to do better: assume new data point
(My friend’s dog — small but not as well behaved)

We can add another perceptron
to help classify better

domestication

from wikipedia

49


https://en.wikipedia.org/wiki/Perceptron

Introduction to CNNss (II)
Perceptron 2D Classification

Maybe we need to do better: assume new data point
(My friend’s dog — small but not as well behaved)

Output
P
cat

dog

W—

Another layer can classify based on
preceding feature layer output

50



Introduction to CNNs (I1I)

“Traditional neural net” in HEP
Fully-Connected Multi-Layer Perceptrons

OOO
OOOO
O OO0

O 00

INnput hidden output
layer,#  layers layer, ¥

A traditional neural network consists of a stack of layers of such
neurons where each neuron 1s fully connected to other neurons of
the neighbor layers

9



Introduction to CNNs (I1I)

“Traditional neural net” in HEP
Problems with it...

Feed in entire image

Output layer

Input layer ‘ Hidden layer

Xi > i » 7, €—o, Target

Problem: scalability
Use pre-determined features

Hidden layer

Xp ———————» y; ———————P» 7z &—o, Target

Problem: generalization
o2



Introduction to CNNs (I1I)

CNN 1ntroduce a limitation by forcing the network to
look at only local, translation invariant features

. ’ /

- -
- -
-
e o e 0,0 o
L]
. .
e /6% oo0 o
.
.
.
L] .
L
ofe e o0 o
.
.
.
e e o
) 4
)
e o o
()

neuron Activation of a neuron depends
on the element-wise product of
3D weight tensor with 3D input

feature map data and a bias term

* Translate over 2D space to process the whole input
* Neuron learns translation-invariant features
* Applicable for a “homogeneous” detector like LArTPC

Want more details?
53 Feel free to ask me later!



Track/Shower

Pixel Labeling
~ How Does SSNet Work? ~

NCx°
CCQE

DIS..!




Quick Recap on CNN

CNN 1s a neural network formed with multiple
convolution layers of neurons

[i,j(X) = O'(Wi - X+ bi) :

Activation of a neuron depends

on the element-wise product of

3D weight tensor with 3D nput
data and a bias term

Each filter (neuron) translates over
2D space to process the whole 1nput,
producing a “feature map” .

515



Quick Recap on CNN

Down-sampled
Feature Maps

L

3rd layer output
feature map

<2
=10
<
=
e
~
=
=
=
e

2nd layer output
feature map
1st layer output
feature map

CNN for image classification

* Goal: provide a single label for the whole image

 How: transform the higher spatial resolution input (1.e. 1mage) into
a vector of 1image features, ultimately a 1D array of feature
parameters useful for the whole 1image labeling, by a successful

chain of convolutional and pooling operations.
56



Quick Recap on CNN

Feature map visualization example
e https://www.youtube.com/watch?v=Agk{lQ41GaM

olbox
convl pl nl convZ p2 n<Z conv



https://www.youtube.com/watch?v=AgkfIQ4IGaM




Semantic Segmentation Network

How to train SSNet?

Supervised training, like 1image classification
But the labels (and errors) are pixel-wise

Input Image FCN-8s DeeplLab CRF-RNN Ground Truth ’

T
Bl /Y

t ,—-—.—,l

{ ') - : '.: X 4 | '.. ‘ ) N ] : L
: ! q '.f ; : / Wy \ ‘ q

) ¥ —__aam'\H . ¥ B ) . xR
7 Sl > A ) |
y = R N\% 4 3 b ! .
I e i 3
{ y i - ’ L {

Boat Bottle

Dog Horse
TV /Monitor

Potted-Plant



Semantic Segmentation Network




SSNet UB Analysis

U-Net + ResNet module design

* Developed for bio-medical research

- ... to mask pixels of living cells (for automatized image analysis)
- Designed for better spatial accuracy to get cells’ boundary correct

» Use ResNet architecture for convolution layers

“U” shape if formed .
by concatenating Segmented pixels of

living cells (yellow
ﬁ I %
feature maps boarder is truth label)

arXiv:1505.04597



https://arxiv.org/pdf/1505.04597.pdf

Training SSNet

“Weight” Image
(for training)

“Pixel Weight” for training

* Assign pixel-wise “weight” to : /_/
penalize mistakes "
» Weights inversely proportional to / |
each type of pixel count y MicroBooNE
» Useful for LArTPC images ( low . Sggnh‘r‘;?ﬂ;’r‘;

information density)

10 cm 10 cm

10 cm
10 cm

MicroBooNE MicroBooNE
Simulation ' Simulation

Preliminary Preliminary




MicroBooNE
TPC Detector
Quick Guide

Run 3469 Event 53223, October 21°%, 2015




TPC Working Principle (I)

1. Charged particles interact in Ar
e [onize argon
e Produce scintillation light

2. Ionization e- drift toward anode

3. Wire planes detect drift e-

Cathode @ 70 kV Electric Field
(plate) ~270 V/em

Anode
(wire plane) }

X=25m

A

ur ¢°¢

64



TPC Working Principle (1I)

1. Charged particles interact in Ar

¢ Jonize argon

e Produce scintillation light

2. Ionization e- drift toward anode

3. Wire planes detect drift e-

Y74

<
<«
&
/'4
‘(K

K

Cathode @ 70 kV
(plate)

Electric Field
~270 V/cm

/

SCintillation Light Y U 245 5 R A R A A A A A 0 A A

Anode
(wire plane)

X=25m

A

ur ¢°¢

Scintillation Light
detected by PMTs
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TPC Working Principle (1V)

1. Charged particles interact in Ar

e [onize argon
e Produce scintillation light

2. Ionization e- drift toward anode

3. Wire planes detect drift e-
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MicroBooNE TPC & Cryostat
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MicroBooNE TPC & Cryostat
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What’s Deep Learning?




Deep Learning ... What & Why

What is Deep Learning?
» A buzz word to gain attention from job recruiters

Dear Kazuhiro Terao,

Happy Friday! | wanted to reach out to you because my client,a
Proprietary Global Market Maker, trading on major financial markets
around the world, is looking for a Data Scientist to join their team. They
are looking for an experienced Data Scientist to join their Chicago Office.
They would like someone who has 3 + years of work or post-doc
experience applying Reinforcement Learning or|Deep Learning
techniques and is proficient with|Python or C.




Deep Learning ... What & Why

What is Deep Learning?

pud @

tectures

e Collective term for neural network (NN) arc

- Consists of large number of layers (deep)
- Breakthrough in computer vision (2012), now Al and more...

o It is a non-linear functional approximation
- NN with millions of parameters to map input to output space
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http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta

